Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.The early-type galaxy SDSS J133519.91+072807.4 (hereafter SDSS1335+0728), which had exhibited no prior optical variations during the preceding two decades, began showing significant nuclear variability in theZwickyTransient Facility (ZTF) alert stream from December 2019 (as ZTF19acnskyy). This variability behaviour, coupled with the host-galaxy properties, suggests that SDSS1335+0728 hosts a ∼106 M⊙black hole (BH) that is currently in the process of “turning on”. Aims.We present a multi-wavelength photometric analysis and spectroscopic follow-up performed with the aim of better understanding the origin of the nuclear variations detected in SDSS1335+0728. Methods.We used archival photometry (from WISE, 2MASS, SDSS, GALEX, eROSITA) and spectroscopic data (from SDSS and LAMOST) to study the state of SDSS1335+0728 prior to December 2019, and new observations fromSwift, SOAR/Goodman, VLT/X-shooter, and Keck/LRIS taken after its turn-on to characterise its current state. We analysed the variability of SDSS1335+0728 in the X-ray/UV/optical/mid-infrared range, modelled its spectral energy distribution prior to and after December 2019, and studied the evolution of its UV/optical spectra. Results.From our multi-wavelength photometric analysis, we find that: (a) since 2021, the UV flux (fromSwift/UVOT observations) is four times brighter than the flux reported by GALEX in 2004; (b) since June 2022, the mid-infrared flux has risen more than two times, and theW1 − W2 WISE colour has become redder; and (c) since February 2024, the source has begun showing X-ray emission. From our spectroscopic follow-up, we see that (i) the narrow emission line ratios are now consistent with a more energetic ionising continuum; (ii) broad emission lines are not detected; and (iii) the [OIII] line increased its flux ∼3.6 years after the first ZTF alert, which implies a relatively compact narrow-line-emitting region. Conclusions.We conclude that the variations observed in SDSS1335+0728 could be either explained by a ∼106 M⊙AGN that is just turning on or by an exotic tidal disruption event (TDE). If the former is true, SDSS1335+0728 is one of the strongest cases of an AGN observed in the process of activating. If the latter were found to be the case, it would correspond to the longest and faintest TDE ever observed (or another class of still unknown nuclear transient). Future observations of SDSS1335+0728 are crucial to further understand its behaviour.more » « less
-
null (Ed.)ABSTRACT Neutron star mergers produce a substantial amount of fast-moving ejecta, expanding outwardly for years after the merger. The interaction of these ejecta with the surrounding medium may produce a weak isotropic radio remnant, detectable in relatively nearby events. We use late-time radio observations of short duration gamma-ray bursts (sGRBs) to constrain this model. Two samples of events were studied: four sGRBs that are possibly in the local (<200 Mpc) Universe were selected to constrain the remnant non-thermal emission from the sub-relativistic ejecta, whereas 17 sGRBs at cosmological distances were used to constrain the presence of a proto-magnetar central engine, possibly re-energizing the merger ejecta. We consider the case of GRB 170817A/GW170817 and find that in this case the early radio emission may be quenched by the jet blast-wave. In all cases, for ejecta mass range of $${M}_{\rm {ej}}\lesssim 10^{-2}\, (5\times 10^{-2})\, \mathrm{M}_\odot$$, we can rule out very energetic merger ejecta $${E}_{\rm {ej}}\gtrsim 5\times 10^{52}\, (10^{53})\, \rm erg$$, thus excluding the presence of a powerful magnetar as a merger remnant.more » « less
-
Abstract The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60–80 t capable of probing the remaining weakly interacting massive particle-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in136Xe using a natural-abundance xenon target. XLZD can reach a 3σdiscovery potential half-life of 5.7 × 1027years (and a 90% CL exclusion of 1.3 × 1028years) with 10 years of data taking, corresponding to a Majorana mass range of 7.3–31.3 meV (4.8–20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community.more » « lessFree, publicly-accessible full text available April 22, 2026
-
Free, publicly-accessible full text available September 1, 2026
-
This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of $$140~fb^{−1}$$ of proton-proton collisions at $$\sqrt{s}=13$$~TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetimemore » « lessFree, publicly-accessible full text available July 1, 2026
-
This report presents a comprehensive collection of searches for new physics performed by the ATLAS Collaboration during the Run~2 period of data taking at the Large Hadron Collider, from 2015 to 2018, corresponding to about 140~$$^{-1}$$ of $$\sqrt{s}=13$$~TeV proton--proton collision data. These searches cover a variety of beyond-the-standard model topics such as dark matter candidates, new vector bosons, hidden-sector particles, leptoquarks, or vector-like quarks, among others. Searches for supersymmetric particles or extended Higgs sectors are explicitly excluded as these are the subject of separate reports by the Collaboration. For each topic, the most relevant searches are described, focusing on their importance and sensitivity and, when appropriate, highlighting the experimental techniques employed. In addition to the description of each analysis, complementary searches are compared, and the overall sensitivity of the ATLAS experiment to each type of new physics is discussed. Summary plots and statistical combinations of multiple searches are included whenever possible.more » « lessFree, publicly-accessible full text available April 22, 2026
-
Top-quark pair production is observed in lead–lead ( ) collisions at at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of . Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is , with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe. © 2025 CERN, for the ATLAS Collaboration2025CERNmore » « lessFree, publicly-accessible full text available April 1, 2026
-
ABSTRACT X-ray emission from the gravitational wave transient GW170817 is well described as non-thermal afterglow radiation produced by a structured relativistic jet viewed off-axis. We show that the X-ray counterpart continues to be detected at 3.3 years after the merger. Such long-lasting signal is not a prediction of the earlier jet models characterized by a narrow jet core and a viewing angle ≈20 deg, and is spurring a renewed interest in the origin of the X-ray emission. We present a comprehensive analysis of the X-ray dataset aimed at clarifying existing discrepancies in the literature, and in particular the presence of an X-ray rebrightening at late times. Our analysis does not find evidence for an increase in the X-ray flux, but confirms a growing tension between the observations and the jet model. Further observations at radio and X-ray wavelengths would be critical to break the degeneracy between models.more » « less
-
A<sc>bstract</sc> A study of the Higgs boson decaying into bottom quarks (H→$$ b\overline{b} $$ ) and charm quarks (H→$$ c\overline{c} $$ ) is performed, in the associated production channel of the Higgs boson with aWorZboson, using 140 fb−1of proton-proton collision data at$$ \sqrt{s} $$ = 13 TeV collected by the ATLAS detector. The individual production ofWHandZHwithH→$$ b\overline{b} $$ is established with observed (expected) significances of 5.3 (5.5) and 4.9 (5.6) standard deviations, respectively. Differential cross-section measurements of the gauge boson transverse momentum within the simplified template cross-section framework are performed in a total of 13 kinematical fiducial regions. The search for theH→$$ c\overline{c} $$ decay yields an observed (expected) upper limit at 95% confidence level of 11.5 (10.6) times the Standard Model prediction. The results are also used to set constraints on the charm coupling modifier, resulting in|κc| <4.2 at 95% confidence level. Combining theH→$$ b\overline{b} $$ andH→$$ c\overline{c} $$ measurements constrains the absolute value of the ratio of Higgs-charm and Higgs-bottom coupling modifiers (|κc/κb|) to be less than 3.6 at 95% confidence level.more » « lessFree, publicly-accessible full text available April 1, 2026
-
The ATLAS experiment has developed extensive software and distributed computing systems for Run 3 of the LHC. These systems are described in detail, including software infrastructure and workflows, distributed data and workload management, database infrastructure, and validation. The use of these systems to prepare the data for physics analysis and assess its quality are described, along with the software tools used for data analysis itself. An outlook for the development of these projects towards Run 4 is also provided.more » « lessFree, publicly-accessible full text available March 6, 2026
An official website of the United States government
